RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 103, Issue 5, Pages 745–749 (Mi mzm11958)

This article is cited in 2 papers

Plane Partitions and Their Pedestal Polynomials

O. V. Ogievetskiiabc, S. B. Shlosmanade

a Aix-Marseille Université, CNRS, CPT UMR 7332, 13288 Marseille, France
b Kazan (Volga Region) Federal University
c P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow
d Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
e Skolkovo Institute of Science and Technology

Abstract: For a linear extension $P$ of a partially ordered set $\mathscr S$, we define a multivariate polynomial by counting certain reverse partitions on $\mathscr S$, called $P$-pedestals. We establish a remarkable property of this polynomial: it does not depend on the choice of $P$. For $\mathscr S$ a Young diagram, we show that this polynomial generalizes the hook polynomial.

Keywords: Young diagram, hook polynomial, Schur functions.

UDC: 512.6

Received: 06.02.2018

DOI: 10.4213/mzm11958


 English version:
Mathematical Notes, 2018, 103:5, 793–796

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026