RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 104, Issue 5, Pages 708–716 (Mi mzm11840)

This article is cited in 15 papers

On the Completeness of Products of Harmonic Functions and the Uniqueness of the Solution of the Inverse Acoustic Sounding Problem

M. Yu. Kokurin

Mari State University, Ioshkar-Ola

Abstract: It is proved that the family of all pairwise products of regular harmonic functions on $D$ and of the Newtonian potentials of points on the line $L\subset\mathbb R^n$ is complete in $L_2(D)$, where $D$ is a bounded domain in $\mathbb R^n$, $n\ge 3$, such that $\overline D\cap L=\varnothing$. This result is used in the proof of uniqueness theorems for the inverse acoustic sounding problem in $\mathbb R^3$.

Keywords: harmonic function, Newtonian potential, completeness, integral equation, acoustic sounding, inverse problem, unique solvability.

UDC: 517.57+517.518.32+519.968.21

Received: 28.10.2017
Revised: 23.11.2017

DOI: 10.4213/mzm11840


 English version:
Mathematical Notes, 2018, 104:5, 689–695

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026