RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2017 Volume 102, Issue 5, Pages 684–699 (Mi mzm11795)

This article is cited in 12 papers

Multipliers in Spaces of Bessel Potentials: The Case of Indices of Nonnegative Smoothness

A. A. Belyaev, A. A. Shkalikov

Lomonosov Moscow State University

Abstract: The aim of the paper is to study spaces of multipliers acting from the Bessel potential space $H^s_p(\mathbb{R}^n)$ to the other Bessel potential space $H^t_q(\mathbb{R}^n)$. We obtain conditions ensuring the equivalence of uniform and standard multiplier norms on the space of multipliers
$$ M[H^s_p(\mathbb{R}^n) \to H^t_q(\mathbb{R}^n)]\qquad \text{for}\quad s,t \in \mathbb{R},\quad p,q > 1. $$
In the case
$$ p,q > 1,\qquad p \le q,\qquad s > \frac np,\qquad t \ge 0,\qquad s-\frac np \ge t-\frac nq, $$
the space $M[H^s_p(\mathbb{R}^n) \to H^t_q(\mathbb{R}^n)]$ can be described explicitly. Namely, we prove in this paper that the latter space coincides with the space $H^t_{q,\mathrm{unif}}(\mathbb{R}^n)$ of uniformly localized Bessel potentials introduced by Strichartz. It is also proved that if both smoothness indices $s$ and $t$ are nonnegative, then such a description is possible only for the given values of the indices.

Keywords: Bessel potential space, multiplier, Strichartz theorem, uniform localization principle.

UDC: 517.518.23

Received: 06.09.2017

DOI: 10.4213/mzm11795


 English version:
Mathematical Notes, 2017, 102:5, 632–644

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026