RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2017 Volume 102, Issue 4, Pages 526–531 (Mi mzm11723)

This article is cited in 13 papers

A Note on Regularity Criteria in Terms of Pressure for the 3D Viscous MHD Equations

S. Galaab, M. A. Ragusab

a Université Abdelhamid Ibn Badis de Mostaganem, Algeria
b Università degli Studi di Catania, Italy

Abstract: This note is devoted to the study of the smoothness of weak solutions to the Cauchy problem for three-dimensional magneto-hydrodynamic system in terms of the pressure. It is proved that if the pressure $\pi$ belongs to $L^2(0,T,\dot B_{\infty,\infty}^{-1}(\mathbb R^3))$ or the gradient field of pressure $\nabla\pi$ belongs to $L^{2/3}(0,T,\mathrm{BMO}(\mathbb R^3))$, then the corresponding weak solution $(u,b)$ remains smooth on $[0,T]$.

Keywords: MHD equations, regularity criteria, critical Besov space.

UDC: 517.95

Received: 20.06.2015
Revised: 17.06.2016

DOI: 10.4213/mzm11723


 English version:
Mathematical Notes, 2017, 102:4, 475–479

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026