RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 103, Issue 5, Pages 724–736 (Mi mzm11721)

This article is cited in 11 papers

Papers published in the English version of the journal

Existence of Infinitely Many Solutions for $\Delta_\gamma $-Laplace Problems

D. T. Luyen, D. T. Huong, L. T. H. Hanh

Department of Mathematics, Hoa Lu University, Ninh Nhat, Ninh Binh City, Vietnam

Abstract: In this article, we study the existence of infinitely many solutions for the boundary–value problem
\begin{gather*} -\Delta_\gamma u+a(x)u=f(x,u) \quad \text{in}\ \ \Omega, \qquad u=0 \quad\text{on}\ \ \partial\Omega, \end{gather*}
where $\Omega$ is a bounded domain with smooth boundary in $\mathbb{R}^N$ ($N \ge 2$) and $\Delta_{\gamma}$ is a subelliptic operator of the form
$$ \Delta_\gamma: =\sum\limits_{j=1}^{N}\partial_{x_j} \big(\gamma_j^2 \partial_{x_j} \big), \qquad \partial_{x_j}: =\frac{\partial }{\partial x_{j}},\quad \gamma = (\gamma_1, \gamma_2, \dots, \gamma_N). $$
Our main tools are the local linking and the symmetric mountain pass theorem in critical point theory.

Keywords: $\Delta_\gamma$-Laplace problems, Cerami condition, variational method, weak solutions, critical point theory.

Received: 10.06.2017
Revised: 12.03.2018

Language: English


 English version:
Mathematical Notes, 2018, 103:5, 724–736

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026