RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 103, Issue 6, Pages 863–874 (Mi mzm11654)

This article is cited in 2 papers

Rademacher Chaoses in Problems of Constructing Spline Affine Systems

S. F. Lukomskii, P. A. Terekhin, S. A. Chumachenko

Saratov State University

Abstract: The paper considers systems of dilations and translations of spline functions $\psi_m$ each of which is obtained by successive integration and antiperiodization of the previous one and the initial function is the Haar function $\chi$. It is proved that, first, each such function $\psi_m$ is the sum of finitely many series in Rademacher chaoses of odd order and, second, for each $m$, the system of dilations and translations of the function $\psi_m$ constitutes a Riesz basis; moreover, lower and upper Riesz bounds for these systems can be chosen universal, i.e., independent of $m$.

Keywords: Rademacher functions, Rademacher chaos, Haar system, system of dilations and translations, splines, Riesz basis, Riesz bounds.

UDC: 517.51

Received: 25.04.2017

DOI: 10.4213/mzm11654


 English version:
Mathematical Notes, 2018, 103:6, 919–928

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026