RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 103, Issue 2, Pages 210–222 (Mi mzm11556)

A Logarithmic Inequality

G. V. Kalacheva, S. Yu. Sadov

a Lomonosov Moscow State University

Abstract: The inequality
\begin{equation*} \ln\ln(r-\ln r)+1 <\min_{0<x\le r-1} (\ln x+ x^{-1}\ln(r-x)) <\ln\ln(r-\ln(r-2^{-1}\ln r))+1, \end{equation*}
where $r>2$, is proved. A combinatorial optimization problem which involves the function to be minimized is described.

Keywords: logarithmic inequality, two-sided estimate, extremal graph.

UDC: 517.272+519.176

Received: 12.02.2017
Revised: 23.04.2017

DOI: 10.4213/mzm11556


 English version:
Mathematical Notes, 2018, 103:2, 209–220

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026