RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2017 Volume 101, Issue 2, Pages 181–185 (Mi mzm11408)

Description of Normal Bases of Boundary Algebras and Factor Languages of Slow Growth

A. Ya. Belovab, A. L. Chernyatievc

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
b Bar-Ilan University, Ramat Gan, Israel
c National Research University "Higher School of Economics" (HSE), Moscow

Abstract: For an algebra $A$, denote by $V_A(n)$ the dimension of the vector space spanned by the monomials whose length does not exceed $n$. Let $T_A(n)=V_A(n)-V_A(n-1)$. An algebra is said to be boundary if $T_A(n)-n<\mathrm{const}$. In the paper, the normal bases are described for algebras of slow growth or for boundary algebras. Let $\mathscr L$ be a factor language over a finite alphabet $\mathscr A$. The growth function $T_{\mathscr L}(n)$ is the number of subwords of length $n$ in $\mathscr L$. We also describe the factor languages such that $T_{\mathscr L}(n)\le n+\mathrm{const}$.

Keywords: normal basis, Sturm sequence, growth function, monomial algebra, factor language.

UDC: 512+519.17+517.987

Received: 09.12.2015

DOI: 10.4213/mzm11408


 English version:
Mathematical Notes, 2017, 101:2, 203–207

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026