RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2017 Volume 102, Issue 6, Pages 874–895 (Mi mzm11301)

This article is cited in 5 papers

Cyclic Modules with $\infty$-Simplicial Faces and the Cyclic Homology of $A_\infty$-Algebras

S. V. Lapin

Saransk

Abstract: A chain bicomplex for $A_\infty$-algebras, which generalizes the Tsygan chain bicomplex in the theory of cyclic homology of associative algebras, is constructed by using the techniques of differential modules with $\infty$-simplicial faces and $D_\infty$-differential modules. For homotopy unital $A_\infty$-algebras, an exact sequence generalizing the Connes–Tsygan exact sequence for unital associative algebras is obtained.

Keywords: cyclic homology, $A_\infty$-algebra, cyclic simplicial module, differential module with $\infty$-simplicial faces, $D_\infty$-differential module.

UDC: 515.14

Received: 28.06.2016
Revised: 17.04.2017

DOI: 10.4213/mzm11301


 English version:
Mathematical Notes, 2017, 102:6, 806–823

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026