RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2017 Volume 101, Issue 1, Pages 85–90 (Mi mzm11281)

This article is cited in 18 papers

The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric

Yu. V. Malykhina, K. S. Ryutinb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University

Abstract: We prove that the Cartesian product of octahedra $B_{1,\infty}^{n,m}=B_1^n\times \dots\times B_1^n$ ($m$ factors) is poorly approximated by spaces of half dimension in the mixed norm: $d_{N/2}(B_{1,\infty}^{n,m},\ell_{2,1}^{n,m})\ge cm$, $N=mn$. As a corollary, we find the order of linear widths of the Hölder–Nikolskii classes $H^r_p(\mathbb T^d)$ in the metric of $L_q$ in certain domains of variation of the parameters $(p,q)$.

Keywords: Kolmogorov width, vector balancing.

UDC: 517.5

Received: 09.06.2016

DOI: 10.4213/mzm11281


 English version:
Mathematical Notes, 2017, 101:1, 94–99

Bibliographic databases:
ArXiv: 1606.00738


© Steklov Math. Inst. of RAS, 2026