RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2017 Volume 102, Issue 2, Pages 231–246 (Mi mzm11251)

This article is cited in 2 papers

$\mathrm{MF}$-Property for Countable Discrete Groups

A. I. Korchagin

Lomonosov Moscow State University

Abstract: We say that a group has an $\mathrm{MF}$-property if it can be embedded in the group of unitary elements of the $C^*$-algebra $\prod M_n/\bigoplus M_n$. In the present paper we prove the $\mathrm{MF}$-property for the Baumslag group ${\langle a,b \mid a^{a^b}=a^2\rangle}$ and also some general assertions concerning this property.

Keywords: countable groups, representations, $C^*$-algebras, Baumslag group.

UDC: 512.547.4

Received: 19.05.2016
Revised: 18.10.2016

DOI: 10.4213/mzm11251


 English version:
Mathematical Notes, 2017, 102:2, 198–211

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026