RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2014 Volume 96, Issue 5, Pages 777–810 (Mi mzm11209)

This article is cited in 56 papers

Papers published in the English version of the journal

The Dirac Operator with Complex-Valued Summable Potential

A. M. Savchuk, A. A. Shkalikov

Moscow State University, Moscow, Russia

Abstract: The paper deals with the Dirac operator generated on the finite interval $[0, \pi]$ by the differential expression $-B\mathbf{y}'+Q(x)\mathbf{y}$, where
$$ B =\begin{pmatrix}0&1\\-1&0\end{pmatrix},\qquad Q(x)=\begin{pmatrix}q_1(x)&q_2(x)\\q_3(x)&q_4(x)\end{pmatrix}, $$
and the entries $q_j(x)$ belong to $L_p[0,\pi]$ for some $p\geqslant 1$. The classes of regular and strongly regular operators of this form are defined, depending on the boundary conditions. The asymptotic formulas for the eigenvalues and eigenfunctions of such operators are obtained with remainders depending on $p$. It it is proved that the system of eigen and associated functions of a regular operator forms a Riesz basis with parentheses in the space $(L_2[0,\pi])^2$ and the usual Riesz basis, provided that the operator is strongly regular.

Keywords: Dirac operator, regular boundary conditions, asymptotic formulas for eigenvalues and eigenfunctions, Riesz basis.

Received: 10.10.2014

Language: English

DOI: 10.1134/S0001434614110169


 English version:
Mathematical Notes, 2014, 96:5, 777–810

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026