RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2004 Volume 75, Issue 1, Pages 109–114 (Mi mzm11)

This article is cited in 2 papers

Convergence of the Newton–Kantorovich Method for Calculating Invariant Subspaces

Yu. M. Nechepurenkoa, M. Sadkaneb

a Institute of Numerical Mathematics, Russian Academy of Sciences
b Université de Bretagne Occidentale

Abstract: We propose a version of the Newton–Kantorovich method which, given a nondegenerate square $n\times n$ matrix and a number $m$, allows us to calculate the invariant subspace corresponding to its smallest (in modulus) eigenvalues. We obtain estimates of the rate of convergence via an integral criterion for circular dichotomy.

UDC: 512.64

Received: 24.10.2002

DOI: 10.4213/mzm11


 English version:
Mathematical Notes, 2004, 75:1, 101–106

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026