RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015 Volume 98, Issue 6, Pages 832–841 (Mi mzm10976)

This article is cited in 23 papers

Asymptotics of the Solutions of the Sturm–Liouville Equation with Singular Coefficients

V. E. Vladikina, A. A. Shkalikov

Lomonosov Moscow State University

Abstract: We obtain asymptotic representations as $\lambda \to \infty$ in the upper and lower half-planes for the solutions of the Sturm–Liouville equation
$$ -y''+p(x)y'+q(x)y= \lambda ^2 \rho(x)y, \qquad x\in [a,b] \subset \mathbb{R}, $$
under the condition that $q$ is a distribution of first-order singularity, $\rho$ is a positive absolutely continuous function, and $p$ belongs to the space $L_2[a,b]$.

Keywords: Sturm–Liouville equation, asymptotic solution, singular coefficient, Volterra integral operator, fundamental system of solutions, space of bounded functions.

UDC: 517.928+517.984

Received: 06.10.2015

DOI: 10.4213/mzm10976


 English version:
Mathematical Notes, 2015, 98:6, 891–899

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026