RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015, Volume 97, Issue 5, Pages 738–744 (Mi mzm10924)

This article is cited in 1 paper

Papers published in the English version of the journal

The Finiteness of Coassociated Primes of Generalized Local Homology Modules

T. T. Nam, D. N. Yen

Ho Chi Minh Pedagogical University, Ho Chi Minh City, Vietnam

Abstract: We present some finiteness results for co-associated primes of generalized local homology modules. Let $M$ be a finitely generated $R$-module and $N$ a linearly compact $R$-module. If $N$ and $H^I_i(N)$ satisfy the finiteness condition for co-associated primes for all $i<k$, then $\operatorname{Coass}_R(H^I_k(M, N))$ is a finite set. On the other hand, if $H^I_i(N)=0$ for all $i<t$ and ${\operatorname{Tor}}^R_j(M,H^I_t(N))=0$ for all $j<h$, then ${\operatorname{Tor}}^R_h(M,H^I_t(N))\cong H^I_{h+t}(M, N)$. Moreover, $\operatorname{Coass}(H^I_{h+t}(M, N))$ is also a finite set provided $N$ satisfies the finiteness condition for co-associated primes. Finally, $N$ is a semi-discrete linearly compact $R$-module such that $0:_NI\not=0$. Let $t=\operatorname{Width}_I(N)$ and $h={\operatorname{tor}}_-(M,H^I_t(N))$; it follows that $\operatorname{Width}_{I+\operatorname{Ann}(M)}(N)=t+h$ and $\operatorname{Coass}(H^I_{h+t}(M, N))$ is a finite set.

Keywords: linearly compact module, local homology, local cohomology.

Received: 28.03.2013

Language: English


 English version:
Mathematical Notes, 2015, 97:5, 738–744

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026