RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015, Volume 97, Issue 3, Pages 402–411 (Mi mzm10919)

Papers published in the English version of the journal

Some Remarks on $\delta$-Koszul Algebras

Jiafeng Lü

Zhejiang Normal University, Jinhua, Zhejiang, China

Abstract: Let $A$ be a $\delta$-Koszul algebra, and let $\mathcal{K}^{\delta}(A)$ and $\mathcal{L}(A)$ denote the categories of $\delta$-Koszul modules and modules with linear presentations. Some necessary and sufficient conditions for $\mathcal{K}^{\delta}(A)=\mathcal{L}(A)$ are given. Set
$$ E(A):=\bigoplus_{i\geqslant0}\operatorname{Ext}_A^i(A_0,A_0) \qquad\text{and}\qquad \mathcal{B}(A):=\sup\{i\in \mathbb{N}\mid \operatorname{Ext}_A^i(A_0,A_0)\cap V\neq0\}, $$
where $V$ is a minimal graded generating space of $E(A)$. In the present paper, we prove that $\{\mathcal{B}(A)\mid A\text{ is }\delta\text{-Koszul}\}=\mathbb{N}$. Finally, the Koszulity of the graded Hopf Galois extension of $\delta$-Koszul algebras is studied.

Keywords: $\delta$-Koszul algebra, $\delta$-Koszul module, graded Hopf–Galois extension, module with linear presentation.

Received: 12.04.2013
Revised: 19.08.2014

Language: English


 English version:
Mathematical Notes, 2015, 97:3, 402–411

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026