RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015, Volume 97, Issue 1, Pages 73–84 (Mi mzm10917)

This article is cited in 38 papers

Papers published in the English version of the journal

Existence of Solutions to Boundary-Value Problems for Semilinear $\Delta_{\gamma}$ Differential Equations

D. T. Luyena, N. M. Trib

a Department of Mathematics, Hoa Lu University, Ninh Nhat, Ninh Binh City, Vietnam
b Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Abstract: In this paper, we study the existence of weak solutions for the boundary-value problem
\begin{equation} \label{TriLuyen1: DG 1} \Delta_{\gamma}u+g(x,u)=0 \quad\text{in}\ \ \Omega,\qquad u=u_0 \quad\text{on}\ \ \partial \Omega, \end{equation}
where $\Omega$ is a bounded domain with smooth boundary in $\mathbb{R}^N$ ($N \ge 2$) and $\Delta_{\gamma}$ is a subelliptic operator of the type
$$ {{\Delta }_{\gamma }}u=\sum\limits_{j=1}^{N}{{{\partial }_{{{x}_{j}}}} (\gamma _{j}^{2}{{\partial }_{{{x}_{j}}}}u ),\qquad {{\partial }_{{{x}_{j}}}}u =\frac{\partial u}{\partial {{x}_{j}}}},\qquad \gamma = (\gamma_1, \gamma_2, \dots, \gamma_N). $$
We use the sub-super solution and variational methods.

Keywords: semilinear degenerate elliptic equation, subsolution, supersolution, variational method, boundary-value problem.

Received: 14.05.2014

Language: English


 English version:
Mathematical Notes, 2015, 97:1, 73–84

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026