RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015 Volume 97, Issue 6, Pages 832–840 (Mi mzm10662)

A Priori Lower Bound for the Minimal Eigenvalue of a Sturm–Liouville Problem with Boundary Conditions of the Second Type

A. A. Vladimirova, E. S. Karulinab

a Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
b Moscow State University of Economics, Statistics and Informatics

Abstract: We establish the attainability of the infimum $m_\gamma$ for the minimal eigenvalues of the boundary-value problems
\begin{gather*} -y''+qy=\lambda y, \\ y'(0)=y'(1)=0 \end{gather*}
as the nonnegative potential $q\in L_1[0,1]$ ranges over the unit sphere of the space $L_\gamma[0,1]$, where $\gamma\in (0,1)$. We also establish that, for $\gamma\leqslant 1-2\pi^{-2}$, the equality $m_\gamma=1$ holds and that, otherwise, the inequality $m_\gamma<1$ is valid.

Keywords: Sturm–Liouville problem, infimum, Lagrange finite-increment theorem, minimal eigenvalue, Hölder's inequality, the space $L_\gamma[0,1]$, $\gamma\in (0,1)$.

UDC: 517.927+517.984

Received: 27.12.2014

DOI: 10.4213/mzm10662


 English version:
Mathematical Notes, 2015, 97:6, 846–853

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026