RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015 Volume 97, Issue 4, Pages 604–608 (Mi mzm10642)

This article is cited in 1 paper

On the Computation of Eigenfunctions and Eigenvalues in the Sturm–Liouville Problem

M. M. Khapaev, T. M. Khapaeva

M. V. Lomonosov Moscow State University

Abstract: We present the variational method for finding the eigenfunctions and eigenvalues in the Sturm–Liouville problem with Dirichlet boundary conditions; the method is based on the proposed functional. As a test example, we consider the potential $\cos(4x)$. Also computations for two functions $\sin((x-\pi)^2/\pi)$ and a high nonisosceles triangle are given.

Keywords: variational method, functional, Sturm–Liouville problem, eigenfunction, eigenvalue, Dirichlet boundary condition, the function $\sin((x-\pi)^2/\pi)$, the function $\cos(4x)$, nonisosceles triangle, random search method, Wolfram Research, “Nminimize” procedure, algorithm.

UDC: 517.927.2

Received: 10.09.2013

DOI: 10.4213/mzm10642


 English version:
Mathematical Notes, 2015, 97:4, 616–620

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026