RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015 Volume 97, Issue 6, Pages 904–916 (Mi mzm10557)

Hamiltonian Paths in Distance Graphs

V. V. Utkin

Lomonosov Moscow State University

Abstract: The object of study is the graph
$$ G(n,r,s)=(V(n,r),E(n,r,s)) $$
with
\begin{align*} V(n,r)&=\{v : v \subset \{1,\dots,n\}, \, |v|=r\}, \\ E(n,r,s)&=\{\{v,u\} : v,u \in V(n,r), \, |v \cap u|=s\}; \end{align*}
i.e., the vertices of the graph are $r$-subsets of the set $\mathcal{R}_n=\{1,\dots,n\}$, and two vertices are connected by an edge if these vertices intersect in precisely $s$ elements. Two-sided estimates for the number of Hamiltonian paths in the graph $G(n,k,1)$ as $n \to \infty$ are obtained.

Keywords: distance graph, Hamiltonian path, simple path, clique, hypergraph.

UDC: 519.17

Received: 31.05.2014
Revised: 10.12.2014

DOI: 10.4213/mzm10557


 English version:
Mathematical Notes, 2015, 97:6, 919–929

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026