RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015 Volume 98, Issue 6, Pages 842–852 (Mi mzm10542)

This article is cited in 3 papers

Boundary-Value Problems for the Schrödinger Equation with Rapidly Oscillating and Delta-Liked Potentials

T. R. Gadylshin

Ufa State Aviation Technical University

Abstract: This paper deals with boundary-value problems on the closed interval $[a,b]$ for the Schrödinger equation with potential of the form $q(x,\mu^{-1}x)+\varepsilon^{-1}Q(\varepsilon^{-1}x)$, where $q(x,\zeta)$ is a $1$-periodic (in $\zeta$) function, $Q(\xi)$ is a compactly supported function, $0\in(a,b)$, and $\mu,\varepsilon$ are small positive parameters. The solutions of these boundary-value problems up to $O(\varepsilon+\mu)$ are constructed by combining the homogenization method and the method of matching asymptotic expansions.

Keywords: Schrödinger equation, boundary-value problem, $1$-periodic function, homogenization method, matching method, rapidly oscillating potential, delta-liked potential.

UDC: 517.927.2+517.928

PACS: 02.30.Hq, 04.20.Ha

Received: 10.07.2014
Revised: 10.02.2015

DOI: 10.4213/mzm10542


 English version:
Mathematical Notes, 2015, 98:6, 900–908

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026