RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015 Volume 97, Issue 5, Pages 718–732 (Mi mzm10470)

This article is cited in 8 papers

Best Approximation Rate of Constants by Simple Partial Fractions and Chebyshev Alternance

M. A. Komarov

Vladimir State University

Abstract: We consider the problem of interpolation and best uniform approximation of constants $c\ne 0$ by simple partial fractions $\rho_n$ of order $n$ on an interval $[a,b]$. (All functions and numbers considered are real.) For the case in which $n>4|c|(b-a)$, we prove that the interpolation problem is uniquely solvable, obtain upper and lower bounds, sharp in order $n$, for the interpolation error on the set of all interpolation points, and show that the poles of the interpolating fraction lie outside the disk with diameter $[a,b]$. We obtain an analog of Chebyshev's classical theorem on the minimum deviation of a monic polynomial of degree $n$ from a constant. Namely, we show that, for $n>4|c|(b-a)$, the best approximation fraction $\rho_n^*$ for the constant $c$ on $[a,b]$ is unique and can be characterized by the Chebyshev alternance of $n+1$ points for the difference $\rho_n^*-c$. For the minimum deviations, we obtain an estimate sharp in order $n$.

Keywords: best approximation of constants, simple partial fraction, Chebyshev alternance.

UDC: 517.538

Received: 24.02.2014
Revised: 21.10.2014

DOI: 10.4213/mzm10470


 English version:
Mathematical Notes, 2015, 97:5, 725–737

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026