RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2004 Volume 76, Issue 2, Pages 258–264 (Mi mzm104)

This article is cited in 6 papers

Smoothly Varying Functions and Perfect Proximate Orders

V. A. Tarov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences

Abstract: It is shown in this paper that $h(r)$ is a smoothly varying function of order $\rho$ if and only if the function $\rho(r)=(\ln h(r))/\ln r$ is a perfect proximate order, i.e., an infinitely differentiable (in a neighborhood of $+\infty$) function for which the conditions $\lim_{r\to+\infty}\rho(r)=\rho$, $\rho\in\mathbb R$, and $\lim_{r\to+\infty}r^n\ln r\rho^{(n)}(r)=0$ for all $n\in\mathbb N$ are satisfied. Consequences of the result indicated above are also obtained in this paper.

UDC: 517.518.26+517.547.22

Received: 27.03.2003

DOI: 10.4213/mzm104


 English version:
Mathematical Notes, 2004, 76:2, 238–243

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026