RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2014 Volume 96, Issue 1, Pages 138–147 (Mi mzm10352)

This article is cited in 11 papers

New Upper Bounds for the Independence Numbers of Graphs with Vertices in $\{-1,0,1\}^n$ and Their Applications to Problems of the Chromatic Numbers of Distance Graphs

E. I. Ponomarenkoa, A. M. Raigorodskiiba

a Moscow Institute of Physics and Technology (State University)
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Upper bounds for the independence numbers in the graphs with vertices at $\{-1, 0,1\}^n$ are improved. Their applications to problems of the chromatic numbers of distance graphs are studied.

Keywords: graph, hypergraph, independence number, chromatic number, distance graph, Hamming distance, Nelson–Erdős–Hadwiger problem.

UDC: 519.17

Received: 08.08.2013
Revised: 26.11.2013

DOI: 10.4213/mzm10352


 English version:
Mathematical Notes, 2014, 96:1, 140–148

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026