RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2014 Volume 96, Issue 3, Pages 440–449 (Mi mzm10344)

This article is cited in 1 paper

Boundary-Value Problems for a Nonlinear Hyperbolic Equation with Variable Coefficients and the Lévy Laplacian

M. N. Feller

, Kiev

Abstract: For a nonlinear hyperbolic equation with variable coefficients and the infinite-dimensional Lévy Laplacian $\Delta _L$,
$$ \beta\biggl(\sqrt{2}\mspace{2mu}\|x\|_H \frac{\partial U(t,x)}{\partial t}\biggr) \frac{\partial^2U(t,x)}{\partial t^2} +\alpha(U(t,x)) \biggl[\frac{\partial U(t,x)}{\partial t}\biggr]^2 =\Delta_LU(t,x), $$
we present algorithms for the solution of the boundary-value problem $U(0,x)=u_0$, $U(t,0)=u_1$ and the exterior boundary-value problem $U(0,x)=v_0$, $U(t,x)|_\Gamma=v_1$, $\lim_{\|x\|_H\to\infty}U(t,x)=v_2$ for the class of Shilov functions depending on the parameter $t$.

Keywords: nonlinear hyperbolic equation, boundary-value problem, Lévy Laplacian, Shilov function, Hilbert space.

UDC: 517.9

Received: 22.06.2013
Revised: 14.10.2013

DOI: 10.4213/mzm10344


 English version:
Mathematical Notes, 2014, 96:3, 423–431

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026