Abstract:
Hodge's conjecture on algebraic cycles is proved for a smooth projective model $X$ of the fiber product $X_1\times_CX_2$ of nonisotrivial one-parameter families of K3 surfaces (possibly with degeneracies) under certain constraints on the ranks of the transcendental cycle lattices of the general geometric fibers $X_{ks}$ and representations of the Hodge groups $\operatorname{Hg}(X_{ks})$.
Keywords:Hodge's conjecture on algebraic cycles, K3 surface, smooth projective model.