RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2013 Volume 93, Issue 6, Pages 803–811 (Mi mzm10243)

This article is cited in 16 papers

On The Bondage Number of Middle Graphs

A. Aytaça, T. Turacia, Z. N. Odabasb

a Ege University
b Izmir University of Economics

Abstract: Let $G = (V(G), E(G))$ be a simple graph. A subset $S$ of $V(G)$ is a dominating set of $G$ if, for any vertex $v \in {V(G)-S}$, there exists some vertex $u \in S$ such that $uv \in E(G)$. The domination number, denoted by $\gamma(G)$, is the cardinality of a minimal dominating set of $G$. There are several types of domination parameters depending upon the nature of domination and the nature of dominating set. These parameters are bondage, reinforcement, strong-weak domination, strong-weak bondage numbers. In this paper, we first investigate the strong-weak domination number of middle graphs of a graph. Then several results for the bondage, strong-weak bondage number of middle graphs are obtained.

Keywords: connectivity, network design and communication, strong and weak domination number, bondage number, strong and weak bondage number, middle graphs.

UDC: 519.17

Received: 01.11.2011

DOI: 10.4213/mzm10243


 English version:
Mathematical Notes, 2013, 93:6, 795–801

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026