Abstract:
It is proved that every continuous derivation on the $*$-algebra $S(\mathcal{M},\tau)$ of all $\tau$-measurable operators affiliated with a von Neumann algebra $\mathcal{M}$ is inner. For every properly infinite von Neumann algebra $\mathcal{M}$, any derivation on the $*$-algebra $S(\mathcal{M},\tau)$ is inner.