RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2014 Volume 95, Issue 5, Pages 763–774 (Mi mzm10205)

This article is cited in 3 papers

Short Sums with a Noninteger Power of a Natural Number

P. Z. Rakhmonov

M. V. Lomonosov Moscow State University

Abstract: We establish a nontrivial estimate for a short trigonometric sum of the form $\sum_{x-y<n\le x}e(\alpha [n^c])$, where $y\ge \sqrt{2cx}\,{\mathscr L}^A$, $A\ge 1$ is a fixed number, ${\mathscr L}=\ln x$, and $c$ is a noninteger satisfying the conditions
$$ 1<c\le \log_2{\mathscr L}-\log_2 \ln {\mathscr L}^{6A},\qquad \|c\|\ge(2^{[c]+1}-1)(A+1){\mathscr L}^{-1}\ln{\mathscr L}. $$


Keywords: short trigonometric sum, estimate of a trigonometric sum, Fourier series, Stirling's formula.

UDC: 511.24

Received: 03.09.2012

DOI: 10.4213/mzm10205


 English version:
Mathematical Notes, 2014, 95:5, 697–707

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026