RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2014 Volume 96, Issue 6, Pages 880–884 (Mi mzm10199)

This article is cited in 1 paper

On Blaschke Products with Finite Dirichlet-Type Integral

R. V. Dallakjan

State Engineering University of Armenia

Abstract: The class of functions with finite Dirichlet-type integral is defined as the set of holomorphic functions $f$ in the unit disk satisfying the following condition:
$$ \int_{0}^{2\pi}\int_{0}^{1} (1-r)^{\alpha}|f'(re^{i\theta})|^{p} r\,dr\,d\theta,\qquad \alpha>-1,\quad 0<p<+\infty. $$
These classes are usually denoted by $D_{\alpha}^p$. In this paper, we prove the converse of Rudin's theorem and thus provide a necessary and sufficient condition for a Blaschke product to belong to the class $D_{0}^{1}$.

Keywords: Blaschke product, Dirichlet-type integral, Hardy class, holomorphic function.

UDC: 517

Received: 16.11.2012

DOI: 10.4213/mzm10199


 English version:
Mathematical Notes, 2014, 96:6, 943–947

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026