RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1978 Volume 23, Issue 5, Pages 721–723 (Mi mzm10000)

This article is cited in 1 paper

Problem of instability in the first approximation

V. E. Slyusarchuk

Novopolotsk Polytechnic Institute

Abstract: Let $E$ be a Banach space, $A$ be a continuous linear operator such that $\sigma(A)\cap\{\lambda: \mathrm{Re}\,\lambda>0\}\ne\varnothing$, and $F(t, x)$ be a continuous function on $[0,\infty)\times E$ satisfying the condition $||F(t, x)||\leqslant q||x||$ ($q=\mathrm{const}$). An example of a system ${dx}/{dt}=Ax+F(t, x)$ is given which has an exponentially stable zero solution for certain $F(t, x)$ with arbitrarily small $q$.

UDC: 517.9

Received: 17.06.1975


 English version:
Mathematical Notes, 1978, 23:5, 398–399

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026