RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2013 Volume 4, Issue 2, Pages 59–72 (Mi mvk83)

This article is cited in 10 papers

Skew LRS of maximal period over Galois rings

M. A. Goltvanitsaa, A. A. Nechaevb, S. N. Zaitseva

a Moscow State Technical University of Radio Engineering, Electronics and Automatics, Moscow
b Academy of Cryptography of the Russian Federation, Moscow

Abstract: Let $p$ be a prime number, $R=\mathrm{GR}(q^d,p^d)$ be a Galois ring with $q^d=p^{rd}$ elements and characteristic $p^d$. Denote by $S=\mathrm{GR}(q^{nd},p^d)$ a Galois extension of the ring $R$ of dimension $n$ and by $\breve S$ the ring of all linear transformations of the module $_RS$. A sequence $v$ over the ring $S$ satisfying the recursion $\forall i\in\mathbb N_0\colon v(i+m)=\psi_{m-1}(v(i+m-1))+\dots+\psi_0(v(i))$, $\psi_0,\dots,\psi_{m-1}\in\breve S$, is called a skew LRS over $S$ with a characteristic polynomial $\Psi(x)=x^m-\sum_{t=0}^{m-1}\psi_tx^t\in\breve S[x]$. We investigate the problem of construction the polynomials $\Psi$ generating LRS $v$ with the maximal possible period $\tau=(q^{mn}-1)p^{d-1}$.

Key words: Galois ring, Frobenius automorphism, skew linear recurrence of maximal period, skew MP-polynomial, rank of a sequence.

UDC: 512.53+519.113.6

Received 18.IX.2012

Language: English

DOI: 10.4213/mvk83



© Steklov Math. Inst. of RAS, 2026