RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2002 Volume 5, Number 1, Pages 3–17 (Mi mt96)

Hyperbolic Regularization of the Sobolev System

V. S. Alekseev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: The article deals with a hyperbolic system with small parameter which turns into a Sobolev system as the parameter vanishes. It is proven that some components of a solution to the Cauchy problem for this hyperbolic system tend to the corresponding components of a solution to the Cauchy problem for the Sobolev system uniformly on the set $[0,T]\times\mathbb R_3$. The derivatives with respect to the space variables of the remaining component converge uniformly on every set $[t_0,T]\times K$, where $0<t_0<T$ and $K$ is a compact set.

Key words: Cauchy problem, Sobolev system, hyperbolic system with small parameter.

UDC: 517.955

Received: 23.03.2001


 English version:
Siberian Advances in Mathematics, 2003, 12:3, 1–15

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026