RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2004 Volume 7, Number 2, Pages 126–158 (Mi mt80)

This article is cited in 2 papers

An Explicit Variational Formula for the Monodromy Group

V. V. Chueshev

Kemerovo State University

Abstract: We study the monodromy groups of linearly polymorphic functions on compact Riemann surfaces of genus $g\ge 2$ in connection with standard uniformizations of these surfaces by Kleinian groups. We find necessary and sufficient conditions under which a linearly polymorphic function on a compact Riemann surface gives a standard uniformization of this surface. We study the monodromy mapping $p\colon\mathbf T_gQ\to\mathcal M$, where $\mathbf T_gQ$ is the vector bundle of holomorphic quadratic abelian differentials over the Teichmüller space of compact Riemann surfaces of genus $g$ and $\mathcal M$ is the space of monodromy groups for genus $g$. We prove that $p$ possesses the path lifting property over each space of quasiconformal deformations of the Koebe group of signature $\sigma=(h,s;i_1,\dots,i_m)$ connected with the standard uniformization of a compact Riemann surface of genus $g=|\sigma|$. Moreover, we obtain an explicit variational formula for the monodromy group of a second-order linear differential equation and the first variation for a solution to a Schwartz equation on a compact Riemann surface.

Key words: monodromy group for a linearly polymorphic function on a compact Riemann surface, standard uniformization of surfaces by Kleinian groups, monodromy mapping and an explicit variational formula for the monodromy group of a second-order linear differential equation.

UDC: 515.17+517.545

Received: 20.12.2002


 English version:
Siberian Advances in Mathematics, 2005, 15:2, 1–32

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026