RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2024 Volume 27, Number 4, Pages 115–140 (Mi mt723)

On exact values of widths of classes of functions analytic in a disk

M. Sh. Shabozov, A. A. Shabozova

Tajik National University, Dushanbe, Tadjikistan

Abstract: In Hardy spaces $H_{q,\rho} (1\le q\le\infty,\ 0<\rho\le R)$ and weighted Bergman spaces $\mathscr{B}_{q,\gamma}$ and $\mathscr{L}_{q,\gamma}$ $(1\le q<\infty, \gamma\ge0)$, the best linear approximation methods for classes $W_{a}^{(r)}H_{q,R}(\Phi)$ of functions are obtained. These are functions $f\in H_{q,R}$ whose $r$-th derivative $f_{a}^{(r)}$ with respect to the argument $t$ of the complex variable $z=\rho\exp(it)$ also belongs to $H_{q,R}$ and satisfies the condition
$$\frac{1}{h}\int_{0}^{h}\omega(f_{a}^{(r)},t)_{H_{q,R}} dt\le\Phi(h),$$
where $h\in\mathbb{R}_+$, $\omega(\varphi,t)_{H_{q,R}}$ is the modulus of continuity of the function $\varphi\in H_{q,R}$. The exact values of certain $n$-widths of the class $W_{a}^{(r)}H_{q,R}(\Phi)$ in the mentioned spaces are calculated.

Key words: best linear approximation methods, modulus of continuity, Hardy space, weighted Bergman space, $n$-widths.

UDC: 517.5

Received: 11.07.2024
Revised: 11.12.2024
Accepted: 13.12.2024

DOI: 10.25205/1560-750X-2024-27-4-115-140



© Steklov Math. Inst. of RAS, 2026