RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2024 Volume 27, Number 4, Pages 5–18 (Mi mt717)

This article is cited in 2 papers

On the asymptotics of the Alexsandrov`s $n$-width compact infinitely smooth periodic function of the Gevrey's class

V. N. Belykh

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: The asymptotics of the Alexandrov's $n$-width of a compact of the $C^\infty$-smooth periodic functions of the Gevrey's class finitely embedded in the space of the $C$ continuous functions on a unit circle of the $S$ functions has been obtained.

Key words: compact set, Gevrey's class, topological dimension, Alexandrov's $n$-width, amount of smoothness, unsaturation.

UDC: 519.6+515.127

Received: 17.09.2024
Revised: 23.09.2024
Accepted: 30.10.2024

DOI: 10.25205/1560-750X-2024-27-4-5-18


 English version:
Siberian Advances in Mathematics, 2024, 34:4, 273–279


© Steklov Math. Inst. of RAS, 2026