RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2001 Volume 4, Number 1, Pages 111–121 (Mi mt7)

This article is cited in 3 papers

On One Extremal Problem on the Euclidean Plane

Yu. V. Nikonorovaab

a Barnaul State Pedagogical University
b Rubtsovsk Industrial Intitute, Branch of Altai State Technical University

Abstract: Given two intersecting congruent rectangles $P_1=ABCD$ and $P_2=EFGH$ in the Euclidean plane, let $L_1$ be the length of the part of the boundary $\partial P_1$ which lies in the interior $\operatorname{int}(P_2)$ of $P_2$ and similarly let $L_2$ be the length of the part of $\partial P_2$ which lies in the interior $\operatorname{int}(P_1)$ of $P_1$. The author solves J. W. Fickett's problem of validating the inequality $\frac13 L_1\le L_2\le 3L_1$.

Key words: convex body, Euclidean geometry, isoperimetric problem.

UDC: 513

Received: 16.03.2000


 English version:
Siberian Advances in Mathematics, 2001, 11:3, 49–59

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026