RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2005 Volume 8, Number 2, Pages 199–206 (Mi mt67)

On the Number of Hamiltonian Cycles in Hamiltonian Dense Graphs

E. A. Okolnishnikova

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: Let $G$ be a Hamiltonian graph with $n$ vertices and $Cn(n-1)/2$ edges, where $3/4<C\le 1$. We show that $G$ contains at least $(C_1n)^{C_2n}$ Hamiltonian cycles, where $C_1$ and $C_2$ are some constants depending on $C$, and prove an analog of Dirac's theorem for graphs with prescribed edges.

Key words: Hamiltonian graph, Hamiltonian cycle, Dirac's theorem.

UDC: 519.175.3+519.174.2+519.714.4

Received: 11.01.2005


 English version:
Siberian Advances in Mathematics, 2006, 16:4, 79–85

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026