RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2021 Volume 24, Number 2, Pages 37–45 (Mi mt649)

Two-sided estimates of norms of a class of matrix operators

A. A. Kalybay

Kazakhstan Institute of Management, Economics and Strategic Research, Almaty

Abstract: In the article, we establish necessary and sufficient conditions for the validity of a discrete Hardy type inequality
$$ \left(\sum\limits_{n=1}^{\infty}|(Af)_n|^q\right)^{\frac{1}{q}} \le C\left(\sum\limits_{k=1}^{\infty}|f_k|^p\right)^{\frac{1}{p}} $$
for one class of matrix operators
$$(Af)_n=\sum\limits_{k=1}^{n}a_{n,k}f_k, n\ge 1,$$
for $1<p,q<\infty$.

Key words: Hardy type inequality, discrete operator, matrix operator, space of sequences.

UDC: 517.51

Received: 23.10.2020
Revised: 12.03.2021
Accepted: 31.03.2021

DOI: 10.33048/mattrudy.2021.24.203



© Steklov Math. Inst. of RAS, 2026