RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2005 Volume 8, Number 1, Pages 176–201 (Mi mt59)

This article is cited in 8 papers

Geometric Symbol Calculus for Pseudodifferential Operators. II

V. A. Sharafutdinov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: A connection on a manifold allows us to define the full symbol of a pseudodifferential operator in an invariant way. The latter is called the geometric symbol to distinguish it from the coordinate-wise symbol. The traditional calculus is developed for geometric symbols: an expression of the geometric symbol through the coordinate-wise symbol, formulas for the geometric symbol of the product of two operators, and of the dual operator. The second part considers operators on vector bundles.

Key words: pseudodifferential operator, connection on a manifold, covariant derivative.

UDC: 517.98

Received: 09.07.2003


 English version:
Siberian Advances in Mathematics, 2005, 15:4, 71–95

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026