RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2006 Volume 9, Number 1, Pages 21–33 (Mi mt37)

This article is cited in 2 papers

The Banach–Steinhaus Uniform Boundedness Principle for Operators in Banach–Kantorovich Spaces over $L^0$

I. G. Ganieva, K. K. Kudaibergenovb

a Tashkent Temir YO'L Muxandislari Instituti
b Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan

Abstract: We consider a vector-valued version of the Banach–Steinhaus uniform boundedness principle for universally complete Banach–Kantorovich spaces over the ring of measurable functions. We prove that, if a family of bounded linear operators in a universally complete Banach–Kantorovich space is pointwise bounded, then it is uniformly bounded. We also present applications to weak convergence and weak boundedness in universally complete Banach–Kantorovich spaces.

Key words: Banach–Kantorovich space, measurable Banach bundle, vector-valued lifting, cyclically compact set.

UDC: 517.98

Received: 07.12.2004


 English version:
Siberian Advances in Mathematics, 2006, 16:3, 42–53

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026