RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2019 Volume 22, Number 1, Pages 127–177 (Mi mt351)

This article is cited in 1 paper

Lie type Jordan algebras

A. V. Popov

19–144 Acad. Filatov ave., Ul'yanovsk, 432064 Russia

Abstract: We study the variety $\mathcal{V}_J$ of Jordan algebras defined by the identities $x^2yx\equiv 0$ and $(x_1y_1)(x_2y_2)(x_3y_3)\equiv 0$. We suggest a method for constructing an algebra in $\mathcal{V}_J$ from an arbitrary Lie superalgebra. For certain subvarieties, we completely describe their identities and sequences of cocharacters. As a corollary, we obtain the first example of a variety of Jordan algebras with fractional exponential growth.

Key words: solvable Lie algebras, polynomial identities, sequence of cocharacters of a variety, growth of varieties of algebras, fractional exponential growth.

UDC: 512.554.7+512.554.34

Received: 05.01.2018
Revised: 05.08.2018
Accepted: 10.10.2018

DOI: 10.33048/mattrudy.2019.22.106


 English version:
Siberian Advances in Mathematics, 2019, 29:4, 274–307

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026