RUS
ENG
Full version
JOURNALS
// Matematicheskie Trudy
// Archive
Mat. Tr.,
2018
Volume 21,
Number 2,
Pages
3–60
(Mi mt337)
A computable structure with non-standard computability
R. R. Avdeev
a
,
V. G. Puzarenko
ab
a
Novosibirsk State University, Novosibirsk, 630090 Russia
b
Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia
Abstract:
We find an example of a computable admissible set whose level of computability is higher than that of the standard model of Peano arithmetic. As a byproduct, we construct a
$1$
model of an undecidable submodel complete theory.
Key words:
admissible set, hyperadmissible set, hereditarily finite superstructure, recursively saturated model, computable model, decidable model,
$\Sigma$
-reducibility,
$\Sigma$
-definability.
UDC:
510.5
Received:
13.09.2017
DOI:
10.17377/mattrudy.2018.21.201
Fulltext:
PDF file (491 kB)
References
English version:
Siberian Advances in Mathematics, 2019,
29
:2,
77–115
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2026