RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2017 Volume 20, Number 2, Pages 80–89 (Mi mt324)

This article is cited in 6 papers

Quasivarieties of graphs and independent axiomatizability

A. V. Kravchenkoabc, A. V. Yakovlevb

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Siberian Institute of Management (Department of RANEPA), Novosibirsk, Russia

Abstract: In the present article, we continue to study the complexity of the lattice of quasivarieties of graphs. For every quasivariety $\mathbf{K}$ of graphs that contains a non-bipartite graph, we find a subquasivariety $\mathbf{K}^\prime\subseteq\mathbf{K}$ such that there exist $2^\omega$ subquasivarieties $\mathbf{K}^{\prime\prime}\in\mathrm{L_q}(\mathbf{K}^\prime)$ without covers (hence, without independent bases for their quasi-identities in $\mathbf{K}^\prime$).

Key words: quasivariety, graph, basis for quasi-identities.

UDC: 512.57

Received: 13.02.2017

DOI: 10.17377/mattrudy.2017.20.204


 English version:
Siberian Advances in Mathematics, 2018, 28:1, 53–59

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026