RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2012 Volume 15, Number 1, Pages 55–73 (Mi mt226)

Semigroups of polygons whose vertices define a centered partition of $\mathbb R^n$

V. M. Gicheva, I. A. Zubarevaa, E. A. Mescheryakovb

a Sobolev Institute of Mathematics, Omsk Division, Omsk, Russia
b Omsk State University, Omsk, Russia

Abstract: A partition $\mathfrak F$ of a Euclidean space into finite subsets has subgroup property $\mathsf{SP}$ if the family of the convex hulls of the leaves of $\mathfrak F$ constitutes a subgroup with respect to the Minkowski addition. If $\mathfrak F$ consists of orbits of a finite linear groups then $\mathsf{SP}$ is equivalent to the fact that the group is a Coxeter group. In this article, this assertion is proved only under the assumption of continuity and centrality of $\mathfrak F$ (this means that every leaf is inscribed in some sphere centered at zero). An example is given of a noncentered partition satisfying $\mathsf{SP}$ (such partitions cannot be Coxeter partitions).

Key words: semigroups of polygon, Coxeter groups.

UDC: 514.1

Received: 26.04.2011


 English version:
Siberian Advances in Mathematics, 2013, 23:1, 20–31

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026