RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2011 Volume 14, Number 2, Pages 14–27 (Mi mt214)

This article is cited in 3 papers

Extremal functions of cubature formulas on a multidimensional sphere and spherical splines

V. L. Vaskevich

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Abstract: We establish the general form of extremal cubature formulas on multidimensional spheres. The domains of definition for the cubature formulas under consideration are Sobolev-type spaces on the sphere. The smoothness of the class function under study may be fractional. We prove that, for a given set of nodes, there exists a one-to-one correspondence between the set of extremal functions of cubature formulas on the sphere and the set of natural spherical splines with zero spherical mean.

Key words: cubature formulas, error functionals, Sobolev spaces on a multidimensional sphere, extremal functions, multidimensional spherical splines.

UDC: 519.644+517.518.8+517.518.855

Received: 22.03.2011


 English version:
Siberian Advances in Mathematics, 2012, 22:3, 217–226

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026