RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2010 Volume 13, Number 1, Pages 3–14 (Mi mt188)

This article is cited in 9 papers

Derivations on commutative regular algebras

A. F. Ber

ISV "Solutions", Tashkent, Uzbekistan

Abstract: For a regular (in the sense of von Neumann) algebra $\mathcal A$ over an algebraically closed field of characteristic $0$, we describe the linear space $\mathcal D(\mathcal A)$ of all derivations on $\mathcal A$. The description is obtained in terms of algebraically independent elements of $\mathcal A$. In particular, we estimate the dimension of the space $\mathcal D(\mathcal A)$, where $\mathcal A=S[0,1]$ is the algebra of measurable functions on $[0,1]$.

Key words: derivation, von Neumann ring, regular algebra, algebraic independence.

UDC: 517.98

Received: 06.07.2009


 English version:
Siberian Advances in Mathematics, 2011, 21:3, 161–169

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026