RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2000 Volume 3, Number 1, Pages 144–196 (Mi mt163)

This article is cited in 3 papers

Resolvent Estimates for Ordinary Differential Operators of Mixed Type

A. V. Chueshov

Novosibirsk State University

Abstract: In the present article, we consider the problem
\begin{equation} Hu+\lambda u=f(t), \quad t\in (0,1), \tag{1} \end{equation}
where $\lambda$ is a complex parameter and $H$ stands for an ordinary differential operator of order $l\ge 2$ defined by the differential expression
$$ Hu=k(t)u^{(l)}(t)+a(t)u^{(l-1)}(t)+\sum_{j=0}^{l-2}a_j(t)u^{(j)}(t), $$
with $u^{(j)}(t)=\frac{d^ju(t)}{dt^j}$, and the collection of boundary conditions
$$ l_1u=u^{(p)}(1)+\sum_{\nu=0}^{p-1}\alpha_{\nu}u^{(\nu)}(1)=0, \quad l_0u=u^{(q)}(0)+\sum_{\nu=0}^{q-1}\beta_{\nu}u^{(\nu)}(0)=0. $$
Using a priori bounds, we prove existence and uniqueness theorems of boundary value problems for linear ordinary differential equations and study dependence of solutions on a parameter. The peculiarity of the problem lies in the fact that the leading coefficient in the equation is of an arbitrary sign on the interval $(0,1)$.

Key words: degenerate ordinary differential operator of arbitrary order, resolvent estimate, resolvent set.

UDC: 517.95


 English version:
Siberian Advances in Mathematics, 2000, 10:4, 15–67

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026