RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2000 Volume 3, Number 1, Pages 38–47 (Mi mt160)

This article is cited in 5 papers

Jordan D-Bialgebras and Symplectic Forms on Jordan Algebras

V. N. Zhelyabin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: It is shown that a symplectic structure determined on a Jordan algebra induces a symplectic structure on the adjoint Lie KKT-algebra. It is proven that Jordan bialgebras of some type defined on semisimple finite-dimensional Jordan algebras are triangular Jordan bialgebras.

Key words: Jordan bialgebra, Lie bialgebra, triangular bialgebra, Yang–Baxter equation, Kantor–Köcher–Tits construction.

UDC: 512.554

Received: 22.03.1999


 English version:
Siberian Advances in Mathematics, 2000, 10:2, 142–150

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026