RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 1998 Volume 1, Number 2, Pages 68–78 (Mi mt140)

This article is cited in 2 papers

Best Error Bounds for the Derivative of a Quartic Interpolation Spline

Yu. S. Volkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: For a quartic $C^2$-spline, G. Howell and A. Varma established the best estimate for an error of interpolation of a smooth function. The article provides an answer to their question on estimating the derivative. We obtain an estimate for the error of approximation to the derivative with a sharp constant.

Key words: quartic spline, interpolation, sharp constant.

UDC: 517.518.85

Received: 21.11.1996


 English version:
Siberian Advances in Mathematics, 1999, 9:2, 140–150

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026